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ABSTRACT: An efficient synthesis of novel functionalized 1,8-naphthyridine
and chromeno[2,3-b]quinoline derivatives via cascade reaction of
2-chloroquinoline-3-carbaldehyde and enaminones or cyclic 1,3-dicarbonyl
compounds was developed. All of the 1,8-naphthyridine derivatives
synthesized were evaluated for their antiproliferative properties in vitro
against cancer cells and several compounds were found to have high activities.
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■ INTRODUCTION

Nitrogen-containing heterocyclic compounds have been widely
used in pharmaceuticals, and designing novel heterocyclic
motifs has become an increasingly urgent mission for chemists
and biologists.1 Among them, 1,8-naphthyridine scaffolds are
interesting synthetic targets because these compounds possess
a wide spectrum of biological activities (Figure 1), including
antibacterial,2 anti-inflammatory,3 antitumor,4 antimalarial,5

antiproliferative,6 antihypertensive,7 and antioxidant activities.8

Additionally, some 1,8-naphthyridine derivatives have been
designed and developed as fluorescent dyes,9 and sensors10

because of their outstanding optical properties. Although several
methods have been reported in the literature for the construction
of 1,8-naphthyridine building blocks,11 these methods invariably
require long multistep process and provide low yields of the
desired product. Therefore, there is an urgent need for the
discovery of new and efficient methods for the construction
of these complex molecules using readily available starting
materials.12

The development of concise and effective protocols for the
construction of structurally complex molecules with biological
activities from readily available starting materials is a major
challenge in both academia and the pharmaceutical industry.
One of the most promising approaches to this type of efficient
synthesis relies on the use of cascade (domino) reactions.
Cascade reactions are one-pot transformations in which more
than one synthetic step combine together in the same reaction
vessel to give a final complex product. Obviation of the need
for isolation and purification of the intermediates results in
maximization of yields, saving time and energy, and reduction
of waste, and thus renders the protocol ecofriendly.13 For these
reasons, the cascade reaction has been used as a powerful tool for
the construction of compound libraries.14

2-Chloroquinoline-3-carbaldehydes, which can be prepared
form the reaction ofN-phenylacetamide with DMF and POCl3,

15

are important synthons used for the synthesis of a variety of
heterocyclic systems like pyrazolo[3,4-b]quinolones,16 pyrano-
[4,3-b]quinolones,17 quinolino[3,2-f ][1,2,4]triazolo[4,3-b]-
[1,2,4]triazepines,18 isoxazolo[5,4-b]quinolones,19 and benzo
[g]naphtho[b][1,8]naphthyridines.20 As part of our ongoing
research into the development of heterocycle synthesis using
domino reactions,21 we report an efficient synthesis of
functionalized 1,8-naphthyridine and chromeno[2,3-b]quinoline
derivatives using substituted 2-chloroquinoline-3-carbaldehyde
as starting material.

■ RESULTS AND DISCUSSION
Initially, we optimized the reaction conditions with 2-
chloroquinoline-3-carbaldehyde 1{1} and 5,5-dimethyl-3-(p-
tolylamino)cyclohex-2-enone 2{1}. The effects of solvents,
bases, and temperature were evaluated for this reaction, and the
results are summarized in Table 1. It was found that the reaction
could not proceed in ethanol under catalyst-free conditions
(Table 1, entry 1). Pleasingly, when the reaction was conducted in
the presence of Cs2CO3 (2 equiv) in ethanol, the target com-
pound 3{1,1} was obtained in 46% yield (Table 1, entry 2). To
improve the yield, different solvents were evaluated. The results
revealed that toluene provided much better results than ethanol,
DMF, THF, CHCl3, CH3CN, and H2O (Table 1, entries 2−8).
Several other bases were then evaluated for their catalytic
efficiency in this reaction. In all cases, two equiv of base was used
and the reaction was carried out in toluene at reflux temperature.
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The results indicated that Cs2CO3 provided a superior catalytic
effect to K2CO3, NaOH, Et3N, and pyridine (Table 1, entries
8−12). To identify the optimum reaction temperature, the
reaction was carried out at 40, 60, 80 and 100 °C and reflux
temperature, providing the desired product in yields of 12%, 27%,
62%, 85%, and 92% (Table 1, entries 13−16 and 8), respectively.
So, the best reaction temperature is at reflux temperature.
The optimized reaction conditions were then tested for library

construction with nine 2-chloroquinoline-3-carbaldehydes
1{1−9}, and 12 enaminones 2{1−12} (Figure 2). The
corresponding functionalized dibenzo[b,g][1,8]naphthyridin-
1(5H)-one 3were obtained in good yields at refluxing temperature
in toluene in the presence of Cs2CO3 (2 equiv). The results are
summarized in Table 2. It was also found that phenyl groups
bearing either electron-withdrawing (such as fluoro, chloro,
bromo, and nitro groups) or electron-donating groups (such as
methyl, methoxy, ethoxy, tert-butyl, and iso-propyl groups) on the
enaminone ring, were tolerated under the reaction conditions,
leading to the final products in satisfactory yields (75%−87%).
To expand the scope of the current method, dimedone

(5,5-dimethylcyclohexane-1,3-dione) (4{1}) was examined as a

replacement for the enaminones (2) (Scheme 1). Surprisingly,
this reaction could not proceed under the optimized conditions.
Pleasingly, when 20 mol % CuI was added, the reaction could
proceed and the target compound 5{1,1} was obtained in 62%
yield.When the ratio of 1{1} and 4{1} was improved to 1:1.5, the
yield of product 5{1,1} was reached 87%. These optimized
reaction conditions were then tested for library construc-
tion with eight 2-chloroquinoline-3-carbaldehydes 1 and
substituted cyclohexane-1,3-dione 4. The corresponding
chromeno[2,3-b]quinoline derivatives 5 were obtained in ex-
cellent yields (85%−94%). The results are summarized in Table 3.
Interestingly, when the reaction of 2-chloroquinoline-3-

carbaldehyde (3{1}) with dimedone (4{1}) in ethanol in the
presence of Et3N, the desired product 5{1,1} was not obtained.
HPLC analysis of the product mixture; however, indicated that
most of the starting materials had been consumed by the reaction
with the formation of a new product, which was subsequently
identified as 9-(quinolin-3-yl)hexahydroxanthene-1,8-dione
6{1,1}. This shows that the reaction proceeded in a different
direction when the reaction conditions were changed. Based on
this result, a series of 9-(quinolin-3-yl)hexahydroxanthene-1,8-
dione derivatives 6 has been synthesized (Table 4).
The structures of all products 3, 5 and 6 were characterized

using IR, 1HNMR, 13CNMR spectroscopies andHRMS analysis.
The structures of compound 5{1,1} and 6{8,1} were further
confirmed by X-ray diffraction analysis22 (Figures 3 and 4).
Although the detailed mechanism of this reaction remains

to be fully clarified, the formation of compound 3 could be
explained by the reaction sequence in Scheme 2. Initially, the
aza-ene addition of enaminones 2 to 2-chloroquinoline-3-
carbaldehyde 1 catalyzed by base lead to the formation inter-
mediate B, based on the imine-enamine tautomerization of
intermediate A. Intermediate B would then undergo an
intramolecular cyclization to give intermediate C. The product
3 was obtained by the elimination of water from intermediate C.
All of the 1,8-naphthyridine derivatives synthesized were

tested for their antitumor activities against hepatic carcinoma
(HepG2) cells in vitro. Initially, the inhibitory rates were
obtained for all tested compounds. Some compounds with
inhibitory rates greater than 50% were tested further to
determined the IC50 value. The results are shown in Table 5.
The most active compounds were 3{7,12}, 3{7,3}, 3{7,1}, and
3{7,2}, with IC50 values of 1.9 ± 0.1, 6.4 ± 2.2, 4.8 ± 0.6, and
5.7 ± 0.7 μM, respectively.

■ CONCLUSION

In summary, we have develpoed an efficient method for the
synthesis of pharmacologically important, functionalized 1,8-
naphthyridine derivatives by cascade reaction of 2-chloroquino-
line-3-carbaldehyde and enaminones in the presence of Cs2CO3.
This method has the advantages of excellent yields, mild reaction
conditions, short reaction times and high selectivity. Overall, our
study suggests that the 1,8-naphthyridine derivatives presented

Figure 1. Some biologically important compounds containing the 1,8-naphthyridine skeletons.

Table 1. Optimization of Reaction Conditions for the
Synthesis of Compound 3{1,1}a

entry solvent base (equiv) T (°C) time (h) yield (%)b

1 EtOH no reflux 2 trace
2 EtOH Cs2CO3 (2) reflux 0.5 46
3 DMF Cs2CO3 (2) 120 3.5 52
4 THF Cs2CO3 (2) reflux 2.5 57
5 CHCl3 Cs2CO3 (2) reflux 1.4 55
6 CH3CN Cs2CO3 (2) reflux 2.5 42
7 H2O Cs2CO3 (2) 90 2 trace
8 toluene Cs2CO3 (2) reflux 0.7 92
9 toluene K2CO3 (2) reflux 1.5 32
10 toluene NaOH (2) reflux 1.5 41
11 toluene Et3N (2) reflux 1.5 trace
12 toluene pyridine (2) reflux 1.5 29
13 toluene Cs2CO3 (2) 40 0.7 12
14 toluene Cs2CO3 (2) 60 0.7 27
15 toluene Cs2CO3 (2) 80 0.7 62
16 toluene Cs2CO3 (2) 100 0.7 85

aReaction conditions: 2-chloroquinoline-3-carbaldehyde (1a, 1 mmol),
enaminones (2a, 1 mmol), solvent (5 mL). bYields was determined by
HPLC-MS.
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here have medicinal values and the basic framework of this class
of heterocyclic compounds is an attractive template for the
identification of novel potential antitumor agents.

■ EXPERIMENTAL PROCEDURES

Melting points are uncorrected. IR spectra were recorded on
Varian F-1000 spectrometer in KBr with absorptions in cm−1.
1H NMR and 13C NMR were determined on Varian Invoa-400
MHz or Invoa-300 MHz spectrometer in CDCl3 solution.
J values are in Hz. Chemical shifts are expressed in parts per
million downfield from internal standard TMS. HRMS analyses
were carried out using Bruker micrOTOF-Q instrument.

2-Chloroquinoline-3-carbaldehydes were synthesized according
to the procedure reported in the literature.15

General Procedure for the Synthesis of Functionalized
1,8-Naphthyridine Derivatives 3. A dry 50 mL flask was
charged with 2-chloroquinoline-3-carbaldehyde 1 (1 mmol),
enaminones 2 (1 mmol), Cs2CO3 (2 mmol, 2 equiv) and toluene
(5 mL). The mixture was stirred at refluxing temperature for
0.7 h. After completion of the reaction (confirmed by TLC), the
reaction mixture was cooled to room temperature. The mixture
was then quenched with water and extracted with CH2Cl2
(3 × 50 mL). The extracts were washed with water (3 × 50 mL)
and dried over anhydrous Na2SO4, After evaporation of the solvent

Figure 2. Substrates used in the synthesis of compounds 3, 5, and 6.
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under reduced pressure, the crude products were purified by
recrystallization from 95% ethanol to give pure products 3.
3,3-Dimethyl-5-(p-tolyl)-2,3-dihydrodibenzo[b,g][1,8]-

naphthyridin-1(5H)-one 3{1,1}: . Red solid; IR (KBr, ν, cm−1)
2957, 1658, 1607, 1560, 1512, 1462, 1383, 1350, 1284, 1175,
1106, 923, 819, 793; 1H NMR (400 MHz, CDCl3) δ (ppm) 7.67
(s, 1H, ArH), 7.48 (d, J = 8.0 Hz, 1H, ArH), 7.39−7.30 (m, 5H,
ArH), 7.15 (d, J = 8.0 Hz, 3H, ArH, CH), 4.23 (s, 1H, CH), 2.48
(s, 3H, CH3), 2.46 (s, 2H, CH2), 1.00 (s, 6H, 2 × CH3);

13C
NMR (75 MHz, CDCl3) δ (ppm) 197.7, 153.1, 148.4, 138.8,
137.5, 136.8, 136.4, 131.0, 130.6, 129.5, 128.1, 127.5, 127.4,
126.1, 125.1, 123.6, 118.6, 112.2, 52.3, 33.6, 30.2, 21.4; HRMS
calcd for C25H22N2NaO [M + Na]+ 389.1630, found 389.1647.
General Procedure for the Synthesis of Chromeno[2,3-

b]quinoline Derivatives 5.A dry 50mL flask was charged with

2-chloroquinoline-3-carbaldehyde 1 (1 mmol), cyclic 1,3-
dicarbonyl compounds 4 (1.5 mmol, 1.5 equiv), Cs2CO3
(2 mmol, 2 equiv), CuI (0.2 mmol, 20 mol %), and toluene
(5 mL). The mixture was stirred at refluxing temperature for
0.8 h under N2 atmosphere. After completion of the reaction
(confirmed by TLC), the reaction mixture was cooled to room
temperature. The mixture was then quenched with water
and extracted with CH2Cl2 (3 × 50 mL). The extracts were
washed with water (3 × 50 mL) and dried over anhydrous

Table 2. Synthesis of Functionalized 1,8-Naphthyridine
Derivatives 3

entry products isolated yield (%) mp (°C)

1 3{1,1} 79 171−173
2 3{1,2} 80 170−172
3 3{1,6} 83 182−183
4 3{1,7} 84 246−248
5 3{1,10} 85 196−198
6 3{1,12} 83 192−194
7 3{2,1} 87 178−180
8 3{2,8} 82 287−288
9 3{3,1} 84 244−246
10 3{3,2} 85 182−184
11 3{4,2} 82 185−186
12 3{4,3} 76 180−182
13 3{5,1} 83 197−198
14 3{6,1} 84 181−182
15 3{6,5} 84 198−199
16 3{7,1} 87 198−200
17 3{7,2} 82 203−204
18 3{7,3} 85 221−222
19 3{7,4} 86 236−237
20 3{7,5} 78 215−216
21 3{7,6} 75 232−233
22 3{7,7} 82 192−194
23 3{7,8} 85 212−214
24 3{7,9} 84 233−234
25 3{7,11} 83 185−186
26 3{7,12} 82 222−223
27 3{8,1} 84 191−193
28 3{8,2} 82 243−245
29 3{8,7} 86 203−205
30 3{9,9} 82 188−189

Scheme 1. Cascade Reaction of 2-Chloroquinoline-3-
carbaldehyde with Dimedone

Table 3. Synthesis of Chromeno[2,3-b]quinoline Derivatives 5

entry products isolated yields (%) mp (°C)

1 5{1,1} 87 168−169
2 5{2,1} 89 189−190
3 5{3,1} 89 182−183
4 5{4,1} 92 170−172
5 5{5,1} 89 158−159
6 5{7,1} 85 186−187
7 5{8,1} 94 196−198
8 5{9,1} 87 165−166
9 5{7,2} 81 162−163
10 5{7,3} 84 168−169

Table 4. Synthesis of 9-(Quinolin-3-yl)hexahydroxanthene-
1,8-dione derivatives 6

entry products isolated yields (%) mp (°C)

1 6{1,1} 89 >300
2 6{3,1} 89 >300
3 6{4,1} 88 >300
4 6{5,1} 93 >300
5 6{7,1} 86 >300
6 6{8,1} 90 >300
7 6{9,1} 90 >300
8 6{1,2} 89 >300
9 6{1,4} 86 >300
10 6{7,4} 88 >300

Figure 3. X-ray structure of compound 5{1,1}.
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Na2SO4, After evaporation of the solvent under reduced
pressure, the crude products were purified by column
chromatography (petroleum ether/acetone = 8:1) to afford the
pure products 5.

3,3-Dimethyl-2,3,5a,12a-tetrahydro-1H-chromeno[2,3-b]-
quinolin-1-one 5{1,1}: Yellow solid; IR (KBr, ν, cm−1) 2950,
1678, 1610, 1388, 1268, 1172, 953; 1HNMR (300MHz, CDCl3)
δ (ppm) 7.86 (s, 1H, ArH), 7.79 (d, J = 8.1 Hz, 1H, ArH),

Table 5. IC50 Values of Selected Compounds 3

Scheme 2. Proposed Mechanism for the Formation of Compound 3
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7.69−7.61 (m, 2H, ArH), 7.40 (t, J = 7.5 Hz, 1H, ArH), 7.19
(s, 1H, CH), 5.51 (s, 1H, CH), 2.53 (s, 2H, CH2), 1.19 (s, 6H,
2 × CH3);

13C NMR (75 MHz, CDCl3) δ (ppm) 196.2, 157.6,
147.1, 147.0, 137.5, 131.4, 127.8, 127.7, 126.7, 126.6, 125.7,
123.4, 116.8, 115.8, 52.7, 33.0, 30.1; HRMS calcd for C18H16NO2
[M + H]+ 278.1181, found 278.1175.
General Procedure for the Synthesis of 9-(Quinolin-3-

yl)hexahydroxanthene-1,8-dione Derivatives 6. A dry
50 mL flask was charged with 2-chloroquinoline-3-carbaldehyde
1 (1 mmol), cyclic 1,3-dicarbonyl compounds 4 (2 mmol), Et3N
(2 mmol, 2 equiv), and ethanol (5 mL). The mixture was stirred
at refluxing temperature for 4 h. After completion of the reaction
(confirmed by TLC), the reaction mixture was cooled to room
temperature. The crude products were collected and purified by
recrystallization from 95% ethanol to give pure products 6.
3,3,6,6-Tetramethyl-9-(2-oxo-1,2-dihydroquinolin-3-yl)-

3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione 6{1,1}:
White solid; IR (KBr, ν, cm−1) 3036, 2957, 1663, 1434, 1361,
1199, 1124, 1002, 923, 761; 1H NMR (400 MHz, CDCl3) δ
(ppm) 13.19 (s, 1H, NH), 8.11 (s, 1H, CH), 7.65 (d, J = 7.6 Hz,
1H, ArH), 7.46 (t, J = 7.2 Hz, 1H, ArH), 7.33 (d, J = 8.4 Hz, 1H,
ArH), 7.19 (t, J = 7.6 Hz, 1H, ArH), 4.82 (s, 1H, CH), 2.47 (s,
4H, 2 × CH2), 2.25−2.12 (m, 4H, 2 × CH2), 1.05 (s, 6H, 2 ×
CH3), 0.87 (s, 6H, 2 × CH3);

13C NMR (100 MHz, CDCl3)
δ (ppm) 197.4, 165.0, 163.5, 141.3, 138.4, 130.5, 129.6, 128.8,
122.3, 120.5, 115.2, 111.7, 51.1, 41.2, 32.4, 31.4, 29.5, 27.2;
HRMS calcd for C26H27NNaO4 [M + Na]+ 440.1838, found
440.1841.
Inhibition of Cell Proliferation.Hepatic carcinoma HepG2

cells were grown in the minimum essential medium Eagles
with Earle’s balanced salts (MEM-EBSS) medium (Hyclone,
Logan, Utah). The medium was supplemented with 100 U/mL
penicillin and 100 mg/mL streptomycin and 10% fetal bovine
serum (FBS) at 37 °C in a humidified atmosphere containing
5% CO2.
For cell proliferation assay, cells were seeded into 96-well

plates (4000 cells/well) and incubated at 37 °C in a humidified

5% CO2 atmosphere. After 24 h, cells were treated with different
concentration compounds for 48 h in triplicate to generate
dose−response curves. Cell proliferation was determined by the
SRB assay as previoud described.23 The IC50 value was calculated
using SigmaPlot 10.0 software, which defined as the inhibitor
concentration of 50% cell growth inhibition
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